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[1] We present a numerical model of the subducting lithosphere that provides an
alternative explanation for stresses causing deep earthquakes. Our model lithosphere is
composed of a olivine, b spinel, g spinel, and perovskite + magnesiowüstite. The heat
conduction equation is solved to determine temperature conditions in the slab and to locate
the equilibrium phase transformations in pressure-temperature space. Volumetric strains in
the subducting lithosphere are calculated from the density of individual phases and from
the heat released or consumed in the phase changes. These strains are used as sources of
stress in the subducting lithosphere. Dislocation creep and Peierls stress creep laws are
included in the viscoelastic rheology. Volumetric reductions due to equilibrium phase
transformations cause high shear stress in the transition zone because of the variable
viscosity inside the subducting slab. Aspects of the model shear stresses are in agreement
with observations of high seismic activity in the Tonga-Wadati Benioff zone. Compression
is oriented along the dip of the slab, and extension is oriented in the plane perpendicular to
the compression axis. Since our model stresses agree with the seismic observations,
and because the model stresses are larger than those caused by buoyancy forces, our model
provides a possible explanation of stresses causing deep earthquakes. Also, our model
does not need metastability of olivine to explain the occurrence of high shear stress in the
transition zone. INDEX TERMS: 8120 Tectonophysics: Dynamics of lithosphere and mantle—general;

8149 Tectonophysics: Planetary tectonics (5475); 8164 Tectonophysics: Stresses—crust and lithosphere;
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1. Introduction

[2] The state of stress is important for understanding the
fate of subducting slabs and the dynamics of mantle
convection. The distribution of stresses in the subducting
lithosphere is determined by the distribution of the sources
of stress and by the strength of the lithosphere that enables
these stresses to persist. Temperature and pressure effects on
subducting minerals are one of the major sources of stress
and one of the factors controlling the state of stress. The
densities of minerals change during subduction due to
increasing temperature and pressure, and buoyancy forces
arise. As minerals undergo phase transformation, latent heat
is released or consumed and internal stresses occur due to
the change of volume. The viscosity of the lithosphere is
responsible for relaxation of the stresses; viscosity decreases

with temperature and magnitude of shear stress and
increases with pressure. Other pressure-dependent and tem-
perature-dependent factors, such as volatile content and
mineral grain size, influence viscosity [e.g., Karato, 1997;
Karato et al., 2001] and thus influence the state of stress in
the subducting lithosphere.
[3] The complex behavior of the subducting lithosphere

is difficult to model, partly because of the uncertainties in
relevant parameter values and partly because of numerical
challenges. Several numerical models of stress with differ-
ent simplifications have been studied: models including
only buoyancy forces [Goto et al., 1985, 1987; Bina,
1996; Yoshioka et al., 1997]; models including thermal
stresses and volumetric reduction stresses [Goto et al.,
1983, 1987; Devaux et al., 2000]; models including only
the a olivine to b spinel phase transformation [Goto et al.,
1987; Devaux et al., 1997, 2000]; and models including all
phase transformations of olivine [Bina, 1996; Yoshioka et
al., 1997]. These models showed that downdip compression
generally observed in subduction zones can be explained by
buoyancy forces resulting from a density contrast between
the subducting lithosphere and the ambient mantle due to
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elevated or depressed phase boundaries [e.g., Goto et al.,
1985; Bina, 1996; Yoshioka et al., 1997; Devaux et al.,
2000] or by stresses due to volumetric reduction of the
metastable a olivine during phase transformation [Goto et
al., 1987; Devaux et al., 2000]. The latter stresses have
higher magnitude and are thus a more probable explanation
of deep earthquakes [Devaux et al., 2000]. The stresses due
to the volume changes of equilibrium phase transformations
have not been studied sufficiently. Goto et al. [1987] studied
the effects of the equilibrium a olivine to b spinel phase
transition and found downdip tension in the central part of
the subducting slab at depths of the transition zone. How-
ever, the kinetic data they used are no longer relevant.
[4] Our stress calculations focus on the effects of volume

changes in the entire sequence of olivine phase transforma-
tions: a ! b ! g ! perovskite + magnesiowüstite. We
consider equilibrium phase transformation for all phase
changes. We use a viscoelastic rheology dependent on
temperature, pressure, shear stress, and Peierls stress, that
is, the dislocation creep and the Peierls stress creep laws.
We simulate diffusion creep (grain size-sensitive rheological
law) by including a low-viscosity layer below phase bound-
aries. We also vary the mantle temperature profile and some
rheological parameters (e.g., the magnitude of Peierls stress)
in order to study their effects on shear stress magnitude.
Since we consider the slab as a two-dimensional structure,
we study the effect of the boundary condition in the trench-
parallel direction by comparing stress solutions for plane
strain and plane stress boundary conditions. Finally, we
compare our model with seismic activity at the Tonga
subduction zone and discuss the relevance of our model
to this example.
[5] The plan for this paper is as follows. The model is

described in section 2 together with model input parameters.
Numerical results are presented in section 3. Then, the
model is compared to seismic observations in the Tonga
subduction zone in section 4. Section 5 discusses the most
important results. A summary is given in section 6.

2. Model Description

2.1. Geometry

[6] The subducting plate is considered as a two-dimen-
sional structure. The slab descends into the mantle with a
velocity v at an angle d to the horizontal (Figure 1). In our
model, v = 10 cm yr�1 and d = 50�. The thickness of the
lithosphere De is determined by the age of the lithosphere at
the onset of subduction. We consider De = 95 km,
corresponding to an age older than 70 Myr [Stein and Stein,
1992].

2.2. Momentum and Rheological Equations

[7] The balance of forces is expressed by the equation

@sij
@xi

þ fi ¼ 0; i ¼ 1; 2; 3

j ¼ 1; 2; 3 ð1Þ

where sij is the stress tensor and fi is the sum of the body
forces acting on the slab. The xi are the Cartesian
coordinates described in Figure 1. The stress sij does not

include the hydrostatic pressure of the surrounding mantle.
The body forces fi thus include the buoyancy forces due to
the difference of density between a given point inside the
slab and a point at the same depth far from the slab. In our
calculations we put fi = 0 because we assume that the
gravitational torque applied to the slab is balanced by the
lifting pressure torque [Turcotte and Schubert, 1982]. This
balance sets the constant dip of the lithosphere. When the
dip of the lithosphere remains constant, the stress due to
buoyancy forces is at least 1 order of magnitude less than
the stresses due to phase change-induced volumetric
changes [Devaux et al., 2000].
[8] We use the constitutive relation of a Maxwell body to

describe the viscoelastic behavior:

_sij þ
m
n

sij �
1

3
skkdij

� �
¼ K _�kkdij i ¼ 1; 2; 3

j ¼ 1; 2; 3

þ2m _�ij �
1

3
_�kkdij

� �
� K _�Tij dij � K _�Vij dij; k ¼ 1; 2; 3 ð2Þ

where _�ij is the time derivative of the strain tensor �ij:

�ij ¼
1

2

@ui
@xj

þ @uj
@xi

� �
ð3Þ

and where ui is the displacement of a point at time t from its
initial position in our reference frame, K is the bulk
modulus, m is the shear modulus, n is the viscosity, and dij is
the Kronecker delta. The variables _�Tij and _�Vij are the strain
rates inside the slab due to thermal expansion from the
warming of the slab and volume contraction due to phase
transformations:

_�Tij ¼
1

3
adij _T ð4Þ

_�Vij ¼ � 1

3

_r
�r

� �
dij: ð5Þ

In equation (4), a is the coefficient of thermal expansion and
_T is the time derivative of the temperature. In equation (5), r
is density, �r is the positive density difference between the
high-pressure phase and the low-pressure phase, and _r=�r is
the time derivative of the fractional volume change of a
phase transformation. Parameter values are listed in Tables 1
and 2 and are discussed in detail in sections 2.8, 2.9, and
2.10. The thermal expansion term in equation (4) causes
stresses when it is distributed nonuniformly inside the slab,
that is, when the time rate of change of temperature is
spatially nonuniform. The volumetric reduction term given
by equation (5) has similar effects (only opposite in sign).
Note that these terms are not dependent on the gravitational
field.

2.3. Boundary Conditions

[9] The boundary conditions on the bottom (x1 = 0), on
the top (x1 = De), and on the leading edge (x2 = 0) of the
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slab are chosen to be stress free so that only the pressure in
the mantle acts on these boundaries. The slab is pinned (ui =
0) at the trench. We tested both zero displacement (u3 = 0,
plane strain) and zero stress (s33 = 0, plane stress) boundary
conditions in the direction parallel to the trench axis.

2.4. Numerical Analysis

[10] Equations (1)– (5) applied to a two-dimensional
structure form a system of two coupled equations with
unknowns u1 and u2. The equations are solved using a
staggered-grid finite difference technique [Madariaga,
1976] with staggered u1 and u2 variables. We use a 2-km
grid spacing in the x1 and x2 directions. The numerical code
was tested against analytic solutions of several problems
(elastic deformation of a slab by its own weight; elastic
deformation of a slab under tension; viscoelastic deforma-
tion of a uniformly loaded slab supported on one side). We
also performed a number of numerical tests for cases withFigure 1. Sketch of the slab model.

Table 1. Elastic and Creep Parameters

Parameters a b g pv Mg0

Molar volume (Vm), cm
3 mol�1 43.67 40.52 39.66 24.46 11.25

Density (r0), kg m�3 3222a 3473a 3548a 4104b 3583b

Bulk modulus (K), GPa 129c 174c 184c 261d 164e

Pressure derivative of bulk modulus
((@K/@p)T)

5.2c 4.3d 4.1d 4.0d 4.2e

Shear modulus (m), GPa 82e 114f 119g 184h 132e

Pressure derivative of shear modulus
((@m/@p)T)

1.4i 1.4i 1.8b 2.0b 2.5e

Temperature derivative of shear
modulus ((@m/@T)p), GPa K�1

�0.013e �0.014b �0.014b �0.028b �0.024e

Thermal expansivity (a), 10�5 K�1 3.05j 2.71j 2.37j 1.73d 3.12e

Grüneisen parameter (g) 1.25c 1.30c 1.35c 1.96k 1.54e

Power (n) for dislocation creep 3.5m 3.5n 3.5m 3.0o 3.3p

Preexponential coefficient for
dislocation creep (C1),
Pa�n s�1

3:5�1022
mn p;Tð Þ

m 4:0�1022
mn p;Tð Þ

n 4:0�1022
mn p;Tð Þ

m 2.1186 � 109o 1024

1:381T bm p; Tð Þ 1�nð Þp;q

Preexponential coefficient for
Peirls’s law (C2), 10

11 s�1
5.7l 7.0n 7.0m

Peirl’s stress (sP), GPa 8.5l 10n 10m

Constant (gm) proportional to
activation energy

31m 31n 31m 20.8o 10.3p

Pressure dependence of melting
temperature (Tm(p)), K

2171(1 +
p

2:44Þ
1

11:4r,s 46.38p + 1833.15t 46.38p + 1833.15t 26.695p + 2572.5u �0.539p2 + 52.15p + 3043.63v

aFrom Jeanloz and Thompson [1983].
bFrom Duffy and Anderson [1989].
cFrom Akaogi et al. [1987].
dFrom Yusa et al. [1993].
eFrom Anderson and Isaak [1995].
fFrom Sawamoto et al. [1984].
gFrom Weidner et al. [1984].
hFrom Yeganeh-Haeri et al. [1989].
iFrom Isaak et al. [1989].
jFrom Akaogi et al. [1989].
kFrom Stixrude et al. [1992].
lFrom Goetze and Evans [1979].
mFrom Karato et al. [2001].
nAssumed to be the same as for g.
oFrom Wright et al. [1992].
pFrom Frost and Ashby [1982].
qWhere b = 2.98 � 10�10 exp(p/3K0).
rFrom Presnall and Walter [1993].
sWhere p is pressure (GPa).
tThe variable Tm(p) is linearly interpolated between two points: (1) Tm(p) of a olivine at pressure of a to b reaction; and (2) Tm(p) of perovskite at

pressure of g to pv + MgO reaction.
uFrom Wang [1999].
vFrom Zerr and Boehler [1994].
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spatially dependent physical parameters and compared them
against the numerical results of Devaux et al. [2000].

2.5. Temperature

[11] In order to solve for the stress distribution in the slab,
we first determined the temperature, the mineralogical
composition, and the values of elastic parameters and
density in the temperature-pressure space of the subducting
slab. The values are calculated separately and then are used
as input for equations (1)–(5). The appropriate equations
are described in this section and in sections 2.6, 2.7, 2.8,
2.9, and 2.10.

[12] The temperature distribution inside the slab is com-
puted using the heat conduction equation

rcp
@T

@t
¼ k

@2T

@x21
þ @2T

@x22

� �
þ rvagT sin dþ QL; ð6Þ

in which adiabatic heating (second term on the right side)
and latent heat QL released or absorbed during phase
transformations of minerals are included. The specific heat
at constant pressure is cp, t is the time, and k is the thermal
conductivity. The coefficient of volume expansion a is
assumed to be only a function of the depth h:

a ¼ a0 � a1h: ð7Þ

[13] The adiabatic temperature profile in the mantle is
used as a boundary condition on the temperature in the slab,
and the distribution of temperature in the oceanic litho-
sphere before subduction is used as an initial condition
(Figure 2 and Table 2):

T x1; t ¼ 0ð Þ ¼ Tl � 273Kð Þ 1� x1

De

� �
þ 273K; ð8Þ

where Tl is the temperature at the base of lithosphere at the
onset of subduction. The shear heating term [e.g., Schubert
et al., 1976] was not included in the calculations, although
frictional dissipation could be important in the slab
[Cherukuri and Shawki, 1995; Larsen and Yuen, 1997;
Kameyama et al., 1999; Regenauer-Lieb and Yuen, 2000].
With the neglect of shear heating, the heat equation (6) and

Table 2. Model Parameters

Name Value

Velocity (v), mm yr�1 100
Dip angle (d), deg 50
Gravity acceleration (g), m s�2 9.8
Thickness of lithosphere (De), km 95
Temperature at base of lithosphere (Tl), K

Colda 1473
Hota 1723

Adiabatic gradient in mantle,b K km�1 0.3
Slab density (r),b kg m�3 3300
Specific heat (cp),

c J kg�1 K�1 1.05 � 10�5

Thermal conductivity (k),b W m�1 K�1 3.465
First-order thermal expansivity (a0),

b K�1 3 � 10�5

Second-order thermal expansivity (a1),
b K�1 m�1 2 � 10�11

aFrom Stein and Stein [1992].
bFrom Turcotte and Schubert [1982].
cFrom Devaux et al. [1997].

Figure 2. Phase diagram of Mg2SiO4 (thin lines) and mantle temperature profiles (thick lines) used as
boundary conditions for the heat equation. Two mantle temperature models are tested. The ‘‘cold’’ model
uses 1473 K as the temperature at the base of the lithosphere; the ‘‘hot’’ model uses 1723 K. The
thickness of the lithosphere is 95 km. The adiabatic gradient is 0.3 K km�1 in both models. The jumps in
the temperature gradient are caused by latent heat released or consumed during phase transformations.
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the momentum equation (1) can be solved independently.
The independent solution to these equations requires less
calculation time than a coupled solution.
[14] Temperature controls the locations of phase trans-

formations in the slab and strongly influences the viscosity
of the subducting lithosphere through the Arrhenius tem-
perature dependence of rheological laws. The most impor-
tant parameters determining temperature in the subducting
slab are the temperature at the base of the oceanic litho-
sphere, the thermal gradient in the mantle, and the thickness
of the lithosphere (determined mainly by its age at the onset
of subduction).
[15] The thickness of the lithosphere and the temperature

at the base of the lithosphere are estimated by inversions of
seafloor depth and heat flow data versus age [Stein and
Stein, 1992]. The temperature gradient in the mantle is
assumed to be adiabatic, and the temperature at the bound-
ary between the upper mantle and the lower mantle is
constrained by laboratory measurements of the dissociation
of spinel to perovskite and magnesiowüstite at the depth
defined by seismological observations [Ito and Takahashi,
1989]. Because of uncertainties in these constraints, we
tested two possible mantle temperature profiles. An adia-
batic temperature gradient of 0.3 K km�1 was used in both
temperature models [Turcotte and Schubert, 1982], while
the basal temperature was 1473 K for the ‘‘cold’’ model and
1723 K for the ‘‘hot’’ model [Stein and Stein, 1992] (Figure
2). We adopted the ‘‘plate’’ cooling model for the determi-
nation of the thickness of the lithosphere. In this model the
thickness of the lithosphere is constant after a certain age.
We use 95 km for the thickness and consider the lithosphere
to be older than 70 Myr [Stein and Stein, 1992].

2.6. Pressure

[16] The preliminary reference Earth model [Dziewonski
and Anderson, 1981] is used to convert pressure into depth.

2.7. Mineralogical Composition

[17] The main minerals that occur in the subducting
lithosphere are olivine, pyroxene, and garnet and their
high-pressure equivalents [Ringwood, 1982]. We assume a
simplified mineralogical composition of the subducting slab
and consider only the polymorphic transition of pure
Mg2SiO4 a olivine to b and g phases and the dissociation
of g spinel to perovskite and magnesiowüstite (Figure 2).
Different chemical compositions of olivine (the iron con-
tent) and phase transitions of other minerals are not con-
sidered in this work. The chemical composition of olivine
containing iron mainly influences the depth of the phase
transformation and also introduces two-phase fields [Akaogi
et al., 1989]. Phase transformations of pyroxene and garnet
introduce more sources of volumetric strain at different
depths in the subducting slab and influence the viscosity
of the subducting slab [Karato, 1997].
[18] The stable phase boundaries are modeled using a

linear p-T dependence:

p ¼ P0 þ
�S

�V
T : ð9Þ

The parameter P0, the change of entropy �S, and the
change of volume �V of appropriate phase reactions are
assumed to be constant and are listed in Table 3.

[19] The latent heat QL in equation (6) is determined by
the pressure p at which phase transformation occurs
[Devaux et al., 1997]:

QL ¼ p� P0ð Þ
Vm

�V

�t
; ð10Þ

where Vm is the molar volume of a mineral phase and �t is
the time step of the calculation. Equations (9) and (10) must
be solved together because they are coupled through the
latent heat release that influences the temperature distribu-
tion in the slab and consequently the depth (i.e., pressure) of
the phase transitions in the slab. The temperature and degree
of phase transformation are then used as inputs to equations
(1)–(5).

2.8. Elastic Constants

[20] The values of elastic parameters K and m at given p-T
conditions are calculated from the following equations
[Goto et al., 1983]:

K p;Tð Þ ¼ K 0; 0ð Þexp �gr

Z T

0

adT
� �

þ @K p;Tð Þ
@p

� �
T

p ð11Þ

m p;Tð Þ ¼ m 0; 0ð Þ þ @m p;Tð Þ
@p

� �
T

pþ @m p; Tð Þ
@T

� �
p

T ; ð12Þ

where gr is the Grüneisen parameter. Pressure and
temperature derivatives of m and K are assumed to be
constant, and values are given in Table 1.

2.9. Density

[21] The densities r of minerals are estimated from the
third order Birch-Murnaghan equation [Goto et al., 1983;
Yoshioka et al., 1997; Devaux et al., 2000].

2.10. Viscosity

[22] We consider only the dislocation creep and Peierls
stress creep laws [e.g., Kameyama et al., 1999]; these are
dependent on temperature, pressure, and differential stress.
An increase of temperature or stress tends to decrease
viscosity, whereas an increase of pressure tends to increase
viscosity. The rheology of rock also depends on grain size
[Karato et al., 2001] and volatile content. Grain size
reduction in the subducting slab is expected to occur below
the phase boundary where new grains grow [Karato, 1997].
Grain size reduction is dependent on grain growth rate and

Table 3. Thermodynamic Parameters

Parameters a to b b to g g to pv + MgO

Volume change of reaction (�V),
cm3 mol�1

�3.16a �0.98a �2.59b

Entropy change of reaction (�S),
J mol�1 K�1

�5.02c �4.10c 7.25d

Reference pressure (P0)
at T = 0 K, GPa

12.057c 12.640c 28.360d

aFrom Akaogi et al. [1989].
bFrom Ito and Takahashi [1989].
cFit to Clapeyron curve in p-T space of Akaogi et al. [1989, Figure 3].
dFit to Clapeyron curve in p-T space of Ito and Takahashi [1989,

Figure 4].
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nucleation rate. Since the growth process is strongly depen-
dent on temperature, the largest grain size reduction is
expected in the coldest part of the slab. If the temperature
is high enough, the phase transition occurs at depths that are
close to equilibrium depths and grain size reduction is not

significant [Riedel and Karato, 1997]. Since we assume
equilibrium phase transitions in our model, we also assume
that grain size reduction is not significant so that diffusion
creep becomes negligible relative to dislocation creep.
However, we test the influence of small grains on rheology

Figure 3. (left) Temperature (K) distribution and (right) phase boundaries in the subducting slab. Both
(top) ‘‘cold’’ and (bottom) ‘‘hot’’ mantle temperature profiles were used to determine the temperature
distribution inside the slab. Degrees of transformation 0.01 and 1 are shown for all phases. The numerals
along the vertical axis denote depths of the bottom side of the slab. Notice that the same depth on the top
side of the slab is shifted 61 km farther along the slab because of the dip of the slab. The horizontal and
vertical axes are not to scale.
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by imposing a layer of low viscosity below the phase
boundaries. The results will be discussed in section 3. The
presence of volatiles in a subducting plate at transition zone
depths is uncertain and we neglect it for simplicity.
[23] The relation for viscosity is

n ¼ s
2 _�

; ð13Þ

where s is the square root of the second invariant of the
deviatoric stress and _e is a strain rate determined either from
a power law [Frost and Ashby, 1982; Karato et al., 2001]

_� ¼ C1snexp
�gmTm pð Þ

T

� �
; s 	 200 MPa ð14Þ

or from a Peierls stress law

_� ¼ C2exp
�gmTm pð Þ

T
1� s

sP

� �2
" #

; s > 200 MPa ð15Þ

where Tm(p) is the pressure-dependent melting temperature
of individual minerals [Karato et al., 2001], gm is a constant

proportional to activation energy, sP is the Peierls stress,
and C1 and C2 are preexponential coefficients for the power
law and for Peierls stress law, respectively. Parameter values
are given in Table 1. The Peierls stress creep law is not
considered for perovskite because it is not well known. The
Peierls stress creep law is also not considered for
magnesiowüstite [Frost and Ashby, 1982] because it cannot
be used without the Peierls stress creep law for perovskite.
[24] When two phases coexist, the parameters K, m, and _e

are weighted according to the degree of phase transforma-
tion. For the weighting of lower mantle minerals we use the
fraction of molar volumes in the slab: 0.7 for perovskite and
0.3 for magnesiowüstite.

3. Results

3.1. Temperature and Phase Transformations

[25] Figure 3 shows the temperature distribution and
degree of phase transformation in the slab for the two
mantle temperature models. The mantle temperature models
differ by 250 K, but this difference decreases inside the slab:
the coldest temperature at, for example, 500 km depth is
900 K for the ‘‘cold’’ mantle temperature model and 1050 K

Figure 4. Distribution of shear stress and orientation of principal stress axes in the subducting slab. The
(left) volumetric reduction term and the (right) thermal expansion term were used as sources of stress.
The ‘‘cold’’ mantle temperature profile was used to determine the temperature inside the slab and the
plane strain boundary condition was used to determine the stress distribution. The color scale represents
the magnitude of shear stress. The orientation of the principal stress axis is shown by colored dashes:
black and magenta dashes show the orientation of compression and extension, respectively. The
orientation of the principal stress axis that is parallel to the trench is not plotted. The numerals along the
vertical axis denote depths of the bottom side of the slab. The horizontal and vertical axes are not to scale.
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Figure 5. Results of test calculations to explain the slab shear stress distribution due to volumetric
reductions. (a) Slab descends vertically into the mantle. The bold solid line shows the location of the only
phase transformation. The dashed lines show the position of the relatively viscous core inside the slab
that was used for Figures 5g and 5h. (b) Slab deformation according to the imposed volumetric reduction.
The deformation shown is not to scale. The dotted rectangle shows the magnification of the grid
deformation as shown in Figures 5c and 5d. (c) Deformed grid for the slab where a constant high
viscosity was used (n = 1029 Pa s). The grid below the phase transformation is deformed uniformly, and
no shear stress occurs in the plane x1, x2. (d) Deformed grid for the slab where a constant high viscosity
was used in the center of the slab (n = 1027 Pa s) and a low viscosity was used at the boundaries (n = 1024

Pa s). The grid below the phase transformation is deformed nonuniformly so the shear stress occurs in the
plane x1, x2. The numerals indicate the distance along the slab given by the grid point number. (e)
Magnitude of s11 (dotted line), s22 (bold solid line), and s33 (solid line) along the center of the slab
(parallel to x2 axis). Viscosity is constant everywhere (n = 1029 Pa s). (f) Similar to Figure 5e, but
viscosity is constant everywhere at n = 1024 Pa s. (g) Similar to Figure 5e, but a high viscosity was used
in the center of the slab (n = 1027 Pa s) and a low viscosity was used at the boundaries (n = 1024 Pa s). (h)
Same as Figure 5g, but for the plane stress boundary condition.
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for the ‘‘hot’’ mantle temperature model. Even though we
tested two different mantle temperature models, we obtain
very similar mineralogical fields inside the slab that differ
mainly in the extent of the stability fields of b and g spinel.
This is due to the fact that different mantle temperature
profiles intersect the phase boundaries at different pressures
(see Figure 2). The mantle temperature profiles are thus not
very important for the location of phase boundaries, but
they can be crucial for determination of viscosity.

3.2. Stress

[26] We calculate the stress distribution in the subducting
slab for the following cases: (1) two source terms, the
thermal expansion term and the volumetric reduction term,
given by equations (4) and (5), respectively; (2) two
different mantle temperature profiles, ‘‘cold’’ and ‘‘hot’’;
and (3) two different boundary conditions in the x3 direc-
tion, plane strain and plane stress.
[27] The stress distributions in the slab due to the volu-

metric reduction term and the thermal expansion term are
shown in Figure 4. The ‘‘cold’’ mantle temperature profile

and the plane strain boundary condition were used. The
shear stress due to volumetric reduction is approximately
twice the stress caused by thermal expansion. While the
shear stress due to the volumetric reductions is restricted to
the depth range 400–700 km, the shear stress due to thermal
expansion occurs from the top of the slab to 700 km depth.
The orientation of principal stress axes due to volumetric
reduction is characterized by compression oriented along
the dip of the slab and tension parallel to the trench. The
orientation of tension along a trench is determined by the
two-dimensional structure of a slab. In contrast, the orien-
tation of principal stress axes due to thermal expansion is
characterized by tension oriented along the dip of the slab
and compression parallel to the trench.
[28] We ran tests with simplified conditions in the sub-

ducting slab in order to explain the observed stress distri-
bution: Is the observed shear stress caused by a nonuniform
distribution of sources of stress (e.g., the term given by
equation (4)) or by nonuniform relaxation of stress? Why
does volumetric reduction yield compression oriented along
the dip of the slab?

Figure 6. Test of the effect of a low-viscosity horizontal layer on stress. The figure shows the
distribution of shear stress and the orientation of principal stress axes in the vertically descending slab.
The only phase transformation occurs at 450 km depth. (left) High viscosity in the center of the slab (n =
1027 Pa s) and low viscosity at the boundaries (n = 1024 Pa s). (right) Same viscosity distribution, but with
a low-viscosity layer (n = 1023 Pa s) at 440–460 km depth. The layer simulates the relaxation by
diffusion creep caused by the presence of small grains below the phase boundary. The color scale
represents the magnitude of shear stress. The orientation of the principal stress axis is shown by colored
dashes: black and magenta dashes show the orientation of compression and extension, respectively. The
orientation of the principal stress axis that is parallel to the trench is not plotted. The numerals along the
vertical axis denote depths of the bottom side of the slab. The horizontal and vertical axes are not to scale.
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[29] First, we tested the effect of the nonuniform distribu-
tion of sources of stress. The viscosity was held constant
everywhere and only the magnitude of the source term �ij

V

varied according to the temperature and pressure in the
subducting lithosphere (see section 2.9). No shear stress is
produced by a nonuniform distribution of source of stress, so
the stress caused by volumetric reductions must be caused by
a nonuniform relaxation of stress, that is, by viscosity
variations. We also tested the flat or curved shapes of phase
boundaries; no shear stresses are produced in this case either.
[30] Second, we tested a slab dipping 90� into the mantle

with only one phase boundary at a certain constant depth
(Figure 5a). During the phase transformation the volumetric
reduction was held constant, that is, �ij

V was constant, the
thermal expansion was �ij

T = 0, and the elastic constants K and
mwere held constant. We studied the stress distribution in the
slab for the following viscosity distributions: (1) when
viscosity in the slab was high everywhere (n = 1029 Pa s);
(2) when viscosity in the slab was low everywhere (n = 1024

Pa s); and (3) a high viscosity (n = 1027 Pa s) in a strip inside
the slab and a low viscosity (n = 1024 Pa s) on the boundaries
of the slab (Figure 5a).We assumed the plane strain boundary

condition. In all three cases the stress is 0 at depths
shallower than the phase boundary (distance along slab
>70, see Figure 5). Near the phase boundary, stresses are
nonzero (distance along slab from 50 to 70) and are related
to the narrowing of the slab in this region. Interestingly,
stresses stay nonzero below this region (<50) in some of the
studied cases. In case 1 the stress components s11 and s22
are zero. The stress component s33 is tensional and its
magnitude is high because the boundary condition in the x3
direction does not allow any displacement in this direction,
while at the same time the internal strain forces the slab to
shrink (Figures 5b, 5c, and 5e). In case 2 all stress
components are relaxed except in the narrow region just
below the phase boundary (Figure 5f). In case 3, s33 is
tensional, s11 is zero, and s22 is compressional in the center
of the slab, whereas there is no stress on the boundaries of
the slab where the viscosity is small. The displacement on
the boundaries of the slab is larger than in the center, which
causes the downdip compression (in the x2 direction) in the
center of the slab (Figures 5d and 5g).
[31] The magnitude of the downdip compression depends

on the viscosity contrast across the slab and on the thickness

Figure 7. Distribution of shear stress and orientation of principal stress axes in the subducting slab.
(left) ‘‘Cold’’ mantle temperature profile used to determine the temperature inside the slab and the plane
strain boundary condition used to determine the stress distribution. (right) ‘‘Hot’’ mantle temperature
profile used to determine the temperature inside the slab and the plane strain boundary condition used to
determine the stress distribution. Both the volumetric reduction term and the thermal expansion term were
used as sources of stress. The color scale represents the magnitude of the shear stress. The orientation of
the principal stress axis is shown by colored dashes: black and magenta dashes show the orientation of
compression and extension, respectively. The orientation of the principal stress axis that is parallel to the
trench is not plotted. The numerals along the vertical axis denote depths of the bottom side of the slab.
The horizontal and vertical axes are not to scale.
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of the central strip. If the boundaries (region outside the
strip) are too weak (i.e., with a low viscosity of 
1022 Pa s)
or too narrow (
10 km) for the same magnitude of the
source of stress, they do not produce any stress in the center
of the slab. We repeated the calculations in case 3 but with
the plane stress boundary condition. The stress components
s33 and s11 are zero and s22 is compressional (Figure 5h).
The compression, though much smaller than in the same
case with the plane strain boundary condition, nevertheless
persists.
[32] Third, we tested the influence of a low-viscosity

horizontal layer on the stress distribution, simulating the
effect of grain size reduction after phase transformation. The
model we used was the same as used in case 3 above, but a
20-km-thick low-viscosity layer (n = 1023 Pa s) was
imposed below the phase boundary. The result is shown
in Figure 6. The shear stress relaxes where the low-viscosity
layer occurs. Depending on the thickness of the layer and on
its viscosity, the stress is relaxed partly or completely. When
the stress is not completely relaxed, the orientation of the
principal stress axes remains the same as in the case without
a low-viscosity layer.
[33] The test runs explain the occurrence of downdip-

oriented compression in the slab. As the slab descends into
the transition zone, the volumetric reduction due to the a
olivine to b spinel phase transformation causes deformation
of the lithosphere. Since the final deformation is nonuniform
due to the nonuniform viscosity of the slab, shear stress
occurs. This shear stress is relaxed during descent into the
deeper mantle until the next phase transformation is encoun-

tered. In our model the next phase transformation is b to g
spinel, occurring at a depth of 
500–550 km. There, the
shear stress due to b! g is added to the unrelaxed stress from
the previous phase transformation. The shear stress survives
to a depth determined by creep relaxation parameters: the
depth is not only determined by the viscosity contrast inside
the slab, as discussed in section 3.2, but also by the pressure
dependence of viscosity (through the pressure dependence of
the activation energy in creep laws). In our model, shear
stress survives to the depth of the upper mantle-lower mantle
transition. No shear stress is caused by the volumetric strain
due to dissociation of g spinel to perovskite and magnesio-
wüstite because in our model there is no viscosity contrast
within the slab when it is in the lower mantle and also
because the slab viscosity there is low, so it relaxes stresses.
[34] The stress distribution in the slab when both source

terms, a ‘‘cold’’ mantle temperature profile, and a plane
strain boundary condition were considered is shown in
Figure 7 (left). Shear stresses as large as 1.5 GPa occur in
the depth range 400–700 km in the central part of the slab
where the viscosity is large. The depths are different from
the depths of phase transformations in the mantle because of
the elevation and depression of phase boundaries inside the
slab. The shear stress is caused by the volumetric reduction
of the phase transformation of a olivine to b and g spinel.
The orientation of principal stress axes is characterized by a
compression oriented along the dip of the slab and a tension
parallel to the trench. The stress distribution for the same
model but for a ‘‘hot’’ mantle temperature is also shown in
Figure 7 (right). The stress field is very similar; the stresses

Figure 8. Same as Figure 7, but for the plane stress boundary condition.
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relax twice as fast as in the case of the cold mantle profile
(Figure 7, left).
[35] The stress field for a ‘‘cold’’ mantle temperature

profile and plane stress boundary condition is shown in
Figure 8 (left). The shear stress occurs in the depth range
400–700 km with a maximum of 
1.4 GPa at 440 km
depth. Below this depth, shear stress relaxes rapidly with
increasing depth, and the highest shear stress of only 0.6
GPa occurs in the narrow cold center of the slab. The
principal stress axes are characterized by a compression
oriented along the dip of the slab and a tension in the plane
perpendicular to compression. The shear stress for the same

model but for a ‘‘hot’’ mantle temperature is shown in
Figure 8 (right). The stress field is again similar, but the
magnitude of the shear stress is lower.
[36] We also tested the influence of the g spinel to

perovskite and magnesiowüstite transformation on stresses
in the slab. Since the stress from the g spinel to perovskite
and magnesiowüstite would arise below the phase bound-
ary, the stress field in the transition zone is not significantly
influenced by this phase transformation. This is discussed in
more detail in section 5.
[37] In all the models described so far the shear stress

occurs in the depth range 400–700 km. The compression
axis is oriented down-dip, whereas the extension axis is
either trench-parallel or in the plane perpendicular to the
compression axis. The magnitude of the shear stress varies
according to the mantle temperature and stress boundary
condition.

3.3. Viscosity

[38] The viscosity distribution in the subducting plate is
shown in Figure 9 for the model with a plane strain
boundary condition and a ‘‘cold’’ mantle temperature pro-
file. Viscosity is highest in the central part of the subducting
slab because the temperature is low there. Viscosity
increases with depth due to the pressure dependence of
the rheological law, but it decreases in the parts of the slab
where the stresses due to phase transformations are concen-
trated. The viscosity in our model slab ranges from 1020 to
1029 Pa s (the upper limit can be considered as elastic
behavior). The stress persists in places where viscosity is
higher than 
1024 Pa s. The viscosity is generally 2 orders
of magnitude lower in the model where the ‘‘hot’’ mantle
temperature profile was considered.
[39] The range of viscosity in our model is very similar to

the range of viscosity used in Karato et al.’s [2001] model.
The distribution of viscosity is similar too, although some
differences arise below the phase transitions due to the
different phase transitions and strains considered.

4. Comparison With Seismic Observations in
Tonga

[40] We compared the state of stress in our model with
seismic observations of the Tonga Wadati-Benioff zone in
the region 179�–185�E and 22�–20�S. The dip, velocity of
subduction, and age of subduction in Tonga agree with the
input parameters in our model. We use the Harvard centroid
moment tensor solutions for orientations of P, B, and T axes
as well as for the locations of hypocenters. The P, B, and T
axes are shown in a cross section in Figure 10. We compare

Figure 9. Viscosity distribution in the subducting slab. The
‘‘cold’’ mantle temperature profile was used to determine the
temperature inside the slab, and the plane strain boundary
condition was used to determine the stress distribution. Both
the volumetric reduction term and the thermal expansion
term were used as sources of stress. The numerals along the
vertical axis denote depths of the bottom side of the slab. The
horizontal and vertical axes are not to scale.

Figure 10. (opposite) Comparison of our model with seismic observations. (top) Shear stress and orientation of principal
stress axes in the subducting slab. The ‘‘cold’’ mantle temperature profile was used to determine the temperature inside the
slab and the plane strain boundary condition was used to determine the stress distribution. Both the volumetric reduction
term and the thermal expansion term were used as sources of stress. The color scale represents the magnitude of shear
stress. The orientation of the principal stress axis is shown by colored dashes: black and magenta dashes show the
orientation of compression and extension, respectively. The orientation of the principal stress axis that is parallel to the
trench is not plotted. The horizontal and vertical axes are to scale. (bottom) Orientation of P (black dashes), B (green
dashes), and T (red dashes) axes in the Tonga subducting slab projected on the plane of the cross section. Length of a bar is
determined by the cosines of the angle between the azimuth of the cross section and the azimuth of the axis. The azimuth of
the cross section is 250�. Data are taken from the Harvard centroid moment tensor solutions.
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our model only with data below 300 km, where the model is
not influenced by the boundary condition at the trench.
[41] Seismic activity in the studied region (deeper than

300 km) is lowest in the depth ranges 
300–370 km and

440–480 km and is highest in the depth ranges 
370–
440 km and 
480–670 km. Our model predicts high shear
stress in the depth range 400–700 km with two maxima,
one below the uppermost phase transformation of a olivine
to b spinel at 400 km depth and the other one below the
phase transformation of b spinel to g spinel at 480 km
depth. The depth range of the modeled shear stress fits the
observations well, except for the depth of the upper max-
imum of shear stress. This depth is influenced by our
simplified chemical composition of olivine. The iron in
olivine moves the phase boundary 
20 km shallower
[Akaogi et al., 1989; Bina, 1997]. Also, the increase in
seismic activity in the depth range 560–640 km is not
predicted by our model.
[42] In our model, compression is oriented down-dip in

the depth range where the shear stress is the highest. This
agrees well with the orientation of P axes in the Tonga
Wadati-Benioff zone [Jiao et al., 2000] and also with
observations of P axes worldwide in this depth range
[Isacks and Molnar, 1971]. The extension is parallel to
the trench or perpendicular to the compression axis in our
model, depending on the boundary condition used in the
direction parallel to trench. This agrees with observations of
B and T axes in Tonga, both of which are parallel to the
trench [Jiao et al., 2000]. However, the B axis parallel to the
trench is more common in worldwide observations [Isacks
and Molnar, 1971].
[43] In our model the orientation of the principal stress

axes does not vary significantly. The most remarkable
variations can be found below phase boundary at 400 km
and 480 km. This might correspond to the variations of P
axes in Tonga at depths 400 km and 520 km (Figure 10).
However, the variations at 400 km depth are more probably
explained by a double seismic layer [Wiens et al., 1993].
Generally, the variations of the state of stress below phase
boundaries when compared with variations of the P, B, and
T axes in the subducting lithosphere could be a useful tool
for understanding phase changes in the subducting litho-
sphere and will be the subject of further investigation.

5. Discussion

[44] High shear stress in the depth range 400–700 km is
well correlated with the occurrence of deep earthquakes
[e.g., Isacks and Molnar, 1971; Green and Houston, 1995].
High shear stress is undoubtedly a trigger of earthquakes,
even though the mechanism of releasing stress to produce
an earthquake at this depth is unknown. Since our model
produces high shear stress in the transition zone for equi-
librium phase transformations, it is not necessary to explain
high shear stress by metastability of olivine [Green and
Houston, 1995]. However, the release of stress by deep
earthquakes may require transformational faulting associat-
ed with a metastable olivine wedge. Other mechanisms such
as dehydration embrittlement, shear instability, ductile fault-
ing, or crystallographic shear not associated with metasta-
bility of olivine may be responsible for deep earthquakes
[see, e.g., Kirby et al., 1996].

[45] The maximum stress drop observed in the Bolivian
earthquake in 1994 was 0.11 GPa [Kanamori et al., 1998].
The magnitude of the maximum model shear stress (1.4
GPa) that occurs just below the phase boundary at 480 km
depth is much larger than the stress drops observed in
individual earthquakes. The shear stress magnitudes in the
rest of the transition zone vary according to the model: 0.9–
1.2 GPa for plane strain and a ‘‘cold’’ mantle temperature
profile and 0.5–0.7 GPa for a ‘‘hot’’ mantle temperature
profile; 0.5 GPa for plane stress and a ‘‘cold’’ mantle
temperature profile and 0.3 GPa for a ‘‘hot’’ mantle tem-
perature profile. The latter values are more in accord with
observed earthquake stress drops.
[46] The magnitude of the model shear stress depends on

the volumetric strains �ij
V. The volumetric strains do not

involve a large uncertainty because they are calculated from
mineral densities, and thus the only way to decrease the
shear stress is through the rheological law. Obviously, the
magnitude of shear stress can be significantly decreased by
using hotter mantle temperature profiles. Another possibil-
ity is to decrease the Peierls stress for transition zone
minerals because when the shear stress is high, the Peierls
stress creep mechanism controls deformation. The Peierls
stress of olivine is 8.5 GPa; the Peierls stress of spinel is not
known precisely, but it is assumed to be 10 GPa [Karato et
al., 2001]. We decreased the value of the Peierls stress of
spinel to 9 GPa, but the magnitude of shear stress did not
decrease significantly. Without using a Peierls stress law
(i.e., using only dislocation creep), the magnitude of max-
imum shear stress is >3 GPa. Reduction of grain size after
phase transformation would decrease the shear stress sig-
nificantly. Kanamori et al. [1998] showed that the efficien-
cy of deep earthquakes is low, implying that the magnitude
of stress drops in the slab must be significantly smaller than
the magnitude of stress in the slab.
[47] A coupled solution of the momentum equation (1)

and the heat equation (6) could change the stress results.
The shear heating term, which could be included in the heat
equation, would affect temperature; in turn, temperature
would affect viscosity and therefore the strain rate. The
strain rate would then influence shear heating. The effect of
the thermal-mechanical coupling is difficult to assess due to
the nonlinearity of the term, but we might expect that shear
heating would be localized below phase boundaries. How-
ever, the additional heat produced by this term can be
compared with the latent heat released at the phase bound-
aries. From our analysis we know that latent heat does not
influence the viscosity because the Peierls stress creep law,
which is mainly sensitive to the shear stress, is the weakest
creep mechanism acting below the phase boundaries. Thus
the shear heating term might not play a crucial role in the
subducting slab.
[48] The resulting stresses associated with the phase

changes in the slab influence the pressure in the slab and
thus the location of the phase transformations. The pressure
drop related to the volumetric reductions for the ‘‘cold’’
model is 
1.2 GPa, which corresponds to a change in depth
of 36 km. The pressure drop for the ‘‘hot’’ model is 
400
MPa, which corresponds to a depth change of 12 km. This
is a maximum estimate since some of the stress could be
relaxed by plastic creep during the phase transformation.
The estimate for the ‘‘hot’’ model is low because part of the
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pressure drop is relaxed due to the low viscosity in this
model.
[49] The magnitude of the phase change-induced shear

stresses could be decreased by adopting a temperature-
dependent thermal conductivity. Temperature dependence
of the thermal conductivity would increase the temperature
inside the slab by 
100 K [Hauck et al., 1999]. This would
decrease the viscosity in the slab and therefore the shear
stress, as well.
[50] Our model provides an explanation for stresses that

can cause deep earthquakes. Validity of our stress model is
dependent on a better knowledge of parameters determining
the viscosity inside the subducting lithosphere, that is,
temperature and grain size. Our model explains earthquakes
with P axes slab dip-parallel and T axes parallel to the
trench. These events may be caused by volumetric reduc-
tions due to phase transformations. The events with P axes
oriented along the dip of the plate and T axes perpendicular
to the slab plane are not predicted by the plane strain model,
but they can occur in the model with the plane stress
boundary condition.
[51] Our model does not show any shear stress at lower

mantle depths. This is caused by the fact that our model
viscosity at these depths does not allow shear stress to
persist there. Thus our stress field provides no information
about the penetration of the subducting slab into the lower
mantle. If our stresses are reflected in the seismic activity
observed in the Wadati-Benioff zones, then P, B, and T axes
cannot be used for the interpretation of slab dynamics. Our
model is limited to subducting plates that descend straight
through the upper mantle and into the lower mantle. Sub-
ducting plates that are strongly deformed upon interaction
with the lower mantle, as shown by seismic tomography,
must be affected by other sources of stress such as buoyancy
and viscous resistance on the sides and leading edge of the
plate. Since our stress model is simplified and dependent on
knowledge of parameters determining the viscosity inside
the subducting lithosphere, as mentioned above, it is pos-
sible that shear stresses due to equilibrium phase changes in
the transition zone will relax at shallower depths than they
do in our model, and other sources of stress, for example,
buoyancy forces, will become more important at these
depths.

6. Conclusions

[52] 1. Volumetric reductions due to equilibrium phase
transformations cause high shear stress in the transition zone
because of the variable viscosity inside the subducting slab.
Model shear stresses arising from these volumetric reduc-
tions are in agreement with observations of high seismic
activity in the Tonga Wadati-Benioff zone. Compression is
oriented along the dip of the slab, and extension is oriented
in the plane perpendicular to the compression axis.
[53] 2. Since our model stresses are in qualitative agree-

ment with the seismic observations, and because the model
stresses are higher than those caused by buoyancy forces,
our model provides a possible explanation of the stresses
causing deep earthquakes. Also, our model does not need
metastability of olivine to explain the occurrence of high
shear stress in the transition zone. The model thus provides
a simple explanation for the stress causing deep earth-

quakes. However, the model says nothing about the actual
mechanisms by which failure occurs in deep earthquakes.
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wüstite, Nature, 371, 506–508, 1994.

�����������������������
C. W. Gable, Earth and Environmental Sciences Division, Los Alamos

National Laboratory, Los Alamos, NM 87545, USA. (gable@lanl.gov)
A. Guest and G. Schubert, Department of Earth and Space Sciences,

University of California, Los Angeles, 595 East Charles E. Young Drive,
Los Angeles, CA 90095, USA. (alice@ess.ucla.edu; schubert@ucla.edu)

ETG 4 - 16 GUEST ET AL.: STRESS IN THE SUBDUCTING LITHOSPHERE


